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Abstract In regions lacking socio-economic data, pairing sat-
ellite imagery with participatory information is essential for
accurate land-use/cover (LULC) change assessments. At the
village scale in Papua New Guinea we compare swidden
LULC classifications using remote sensing analyses alone
and analyses that combine participatory information and re-
motely sensed data. These participatory remote sensing (PRS)
methods include participatory land-use mapping, household
surveys, and validation of image analysis in combination with
remotely sensed data. The classifications of the swidden area
made using only remote sensing analysis show swidden areas
are, on average, two and a half times larger than land man-
agers reported for 1999 and 2011. Classifications made using
only remote sensing analysis are homogeneous and lack dis-
crimination among swidden plots, fallow land, and non-
swidden vegetation. The information derived from PRS
methods allows us to amend the remote sensing analysis and
as a result swidden areas are more similar to actual swidden
area found when ground-truthing. We conclude that PRS
methods are needed to understand swidden system LULC
complexities.

Keywords Swidden . Land-use/land-cover . Participatory
data . Village scale . PapuaNewGuinea

Introduction

Satellite imagery has improved spatial and temporal estimates
of land changes, yet even high-resolution imagery can result
in poor enumeration and an oversimplification of land chang-
es (Hett et al. 2012; IPCC Core Writing Team 2001; Ziegler
et al. 2011). To better understand the drivers of land change
ancillary data have been paired with satellite imagery to sup-
port observations. For example, logging exports in board
lengths are used to estimate the amount of forest cleared
(Mather 2005; Kohl et al. 2015). However, compiling and
incorporating ancillary data for all types of land change re-
mains a challenge, as the drivers of change are often complex.
Recognizing this, it is important to utilize ancillary data to
create the most accurate land-use and land-cover (LULC)
analysis possible if land change data are to be used to inform
policy, develop conservation strategies, and create the best
management plans.

Participatory information derived from local knowledge is
an important type of ancillary data that provides essential in-
formation to link observed patterns and trends of land-cover
from remotely sensed data to ground-level land-use activities
(Rindfuss et al. 2003; Herrmann et al. 2005; Leisz and
Rasmussen 2012). Integrating spatial and social sciences is a
way to comprehensively explore the human-environment in-
terface and identify the driving forces causing changes in live-
lihood decisions and LULC (Herrmann et al. 2014; Rindfuss
et al. 2003). Recent research demonstrates that more compre-
hensive understanding of local environmental and livelihood
dynamics is achieved when stakeholders are included in re-
search efforts (Ostrom 2009; McCall and Dunn 2012; Wakie
et al. 2016). Stakeholders are those who have social or eco-
nomic interests in the research results as it can influence their
livelihoods or objectives (Estrella et al. 2000; Ramanath and
Gilbert 2004). Stakeholders can include indigenous people,
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land-managers, community and development organizations,
and policy makers.

In LULC change studies participatory research is conduct-
ed in collaboration with local land-managers and provides the
means to assemble and quantify local peoples’ environmental
perspectives, knowledge, and resource use through discus-
sions, interviews, and various activities (e.g. resource map-
ping, resource use ranking). This type of integrated research
provides an opportunity to discuss past trends and future per-
spectives of change that may not be available in other empir-
ical datasets. Participatory information and local knowledge
can be made spatially explicit by using remote sensing imag-
ery and geographical information systems (GIS) to provide
further conceptualization of linear and non-linear connections
between resource decisions and LULC changes (An 2012).
These methods are broadly categorized as participatory GIS
(PGIS). However, when the focus is to improve LULC clas-
sifications from satellite imagery we believe that a more ac-
curate description is participatory remote sensing (PRS) be-
cause the participatory contributions are focused on the vali-
dation of LULC analyses and pairing satellite image analysis
with resource maps. The advantage of PRS is that local land
managers’ spatial knowledge of the LULC can be recorded
and explored in greater detail with the use of spatially explicit
imagery and participatory maps (PPM). Also, the local land
managers are included in and contribute to data analysis.

Participatory methods have produced intriguing changes in
the representation and validation of LULC and changes there-
in (Dunn 2007; Voinov and Bousquet 2010; Lynam et al.
2007; Fritz et al. 2012; Matthews et al. 2007; McCall 2003).
This interdisciplinary framework has also improved results
(Voinov and Bousquet 2010; Lynam et al. 2007) and shows
that detailed land-use knowledge can refine remote sensing
LULC classifications and change detection (Schmidt-Vogt
et al. 2009; Leisz and Rasmussen 2012). There are many
examples of participatory research being used in LULC anal-
yses, and some of the more recent include sea grass changes in
the Solomon Islands (Lauer and Aswani 2010), coastal man-
agement in Hawaii (Levine and Feinholz 2015), vegetation
changes in the Sahel (Herrmann et al. 2014), invasive species
management strategies in Kenya (Wakie et al. 2016) and
swidden agricultural changes in Vietnam (Leisz and
Rasmussen 2012; Laney and Turner 2015).

Swidden agriculture systems (also referred to as slash-and-
burn agriculture and shifting cultivation) are usually part of a
subsistence livelihood system. Swidden land-uses and land-
covers are dynamic and heterogeneous and pose many chal-
lenges when land-cover maps are based on satellite image
analyses alone. This is because swidden shifts between culti-
vated and fallow periods, where tree cover is cut, dried,
burned, crops planted and harvested, and fields fallowed for
a length of time so that natural vegetation regenerates until it is
bush or tree cover again, at which point it is cleared for

agriculture. Across the globe over 300 million people employ
some form of swidden (Mertz et al. 2009). As a result, land-
cover associated with swidden systems is highly diverse. The
diversity stems from the heterogeneity of climatic and envi-
ronmental variables (e.g. precipitation, temperature, topogra-
phy, hill slope, and soil nutrients), cultures, and techniques
used (e.g. amount of time under crop or fallow, plot sizes,
terracing, and crop selection; Fox et al. 2009). Also, swidden
plots often follow natural contours, have swaths of natural
vegetation between and within plots, and are selected to max-
imize crop production (Padoch 1986; Conklin 1961).

The variation found in swidden systems challenges
our capabilities to accurately map it. Within a 100-m
radius a large number of swidden land-uses can exist
at one time (e.g. newly cleared land, cultivated land
with young crops, recent fallow used for pasture, older
fallow used for collecting non-timber forest products,
etc.) and each could have a different land-cover. In this
small area, multiple land-covers exist as well and can
include a recently cleared plot with new crop sprouts,
an early fallow plot that is dominated by young grass
and herb growth, a cultivated plot with a mix of fruit
trees, ground cover crops, and bush-like crops (i.e. cas-
sava), and areas of woody growth that include mature
trees. In addition to spatial variability, swidden land-
covers are also temporally variable, meaning land-
covers are not permanent and can change over relatively
short time scales (e.g. after a few months, annually).
The spatial and temporal dynamics of swidden land-
covers are influenced by local conditions and manage-
ment decisions. Another aspect that makes swidden dif-
ficult to assess is that tree cover on older fallow land
and tree cover of natural forest areas are nearly indis-
tinguishable in satellite imagery due to spectral
similarities.

In response to such challenges, numerous remote sensing
methods have been developed to identify and classify the di-
versity of swidden land-covers worldwide. A review by Li
et al. (2014) describes techniques used in Southeast Asia
and these include integrating spectral classification (optical
and radar), phonological (morphological and physiological
responses), statistical (binomial logistical regressions, ma-
chine learning), and landscape ecology (land-cover composi-
tion patterns).

In Papua New Guinea (PNG) identifying and classifying
swidden LULC changes have received little to no attention.
However, such analyses are vital in a country where approx-
imately 85% of the population depends on swidden to fulfill
subsistence and livelihood needs. An analysis of forest cover
change at the national level cited swidden as one of the leading
causes of forest degradation and loss, after timber extraction
(Shearman et al. 2009). Based on the assessment that 85% of
the population relies on swidden, their analysis uses
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population growth to extrapolate the expansion of swidden
and therefore, population growth equals growth in swidden
area. Using population growth estimates, Shearman et al.
(2009) speculate that swidden expansion will continue to be
a major cause of forest degradation and losses. However, since
2000 the land-cover change literature has conclusively shown
that such simplistic use of population as a driver of land-cover
change is not valid (Geist and Lambin 2002). Recent reviews
of swidden and forest interactions worldwide, further show
that LULC dynamics are not so simple (Lambin et al. 2001;
Schmidt-Vogt et al. 2009; Fox et al. 2000; Mather and Needle
2000; van Vliet et al. 2012).

The Shearman et al. (2009) study is at the national level
and LULC change assessments that focus on swidden at the
national or regional level are challenging due to the extensive
data collection required and the necessity to aggregate the data
at this coarse scale (Li et al. 2014). Rindfuss et al. (2004)
show that a relationship between population growth and de-
forestation found at a national level is an artifact of scale and
when data are disaggregated to sub-national or local levels the
relationship can be lost. To accurately understand drivers of
deforestation and the role that population growth does or does
not play, it is necessary to link remote sensing land-cover
observations to ground level activities at the local or village
level. In PNG, this means that a large sample of village level
case studies is vital to identify the true drivers of land-cover
change in the country. Such case studies should incorporate
livelihood and swidden systemmanagement decisions and the
associated influences on LULC trends. A literature search of
peer reviewed articles at the village scale resulted in three
LULC studies in PNG and these were conducted in a single
region, the Highlands, a densely populated region in the cen-
tral mountains (Ohtsuka 1994; Umezaki et al. 2000; Umezaki
et al. 2002). Other articles found assess livelihood changes in
response to major resource extraction from oil palm
(Koczberski and Curry 2005; Koczberski et al. 2009;
Koczberski et al. 2012) and mining (West 2006).

Goals and Objectives

As noted above, remote sensing methods alone are not suffi-
cient to assess the dynamic nature of swidden. Therefore, the
goal of this paper is to examine the difference between LULC
assessment results obtained from using remote sensing data
analysis alone and those obtained from using a multidisciplin-
ary approach that integrates participatory data into remote
sensing analysis. This study is conducted at the village scale
and uses participatory and Landsat satellite data for 1999 and
2011. Using the results we aim to discuss land-cover changes
at the village and compare these to a national level study by
Shearman et al. (2009).

Methods

Study Area

The study village is a coastal community approximately
60 km south-southeast from the second largest city in PNG,
Lae (Fig. 1). The customary territory contains diverse flora
and fauna in both the terrestrial (330 km2) and marine
(170 km2) habitats (Bein et al. 2007; Longenecker et al.
2011). Customary land tenure governs how land is used in
the livelihood system, which is subsistence based and includes
land-use activities (swidden, forest, animal husbandry, and
hunting) and marine resources (ocean and reef). Swidden is
the primary means of subsistence production. The main swid-
den area is located 5 km north of the village in a river delta.
Some smaller swidden plots are scattered around the village.
Seasonal deposits of rich fluvial sediments from rainy season
floods replenish soil fertility and allow for shorter fallow pe-
riods. As a result, the fallow periods are typically five to seven
years and have not been longer than 10 to 12 years throughout
the village history. Because of the fertile soils and the large
expanse of the delta, cultivation has remained contained in the
flat land of the delta area. The crops include sago palm, root
crops (cassava, taro, sweet potato, yam), fruit trees (betel nut,
mango, coconut, banana, papaya), melons, pineapple, cucum-
bers, sugar cane, pit-pit (wild cane), and leafy greens.

There are many reasons that this village is an ideal site to
assess land-cover changes within a swidden system. First,
swidden in this village is located atop a fertile delta and, while
this is locally unique, McAlpine and Freyne (2001) report that
4% of the PNG land surface are littoral and alluvial fans and
support approximately 19% of the population. Therefore, it is
representative of swidden areas that are depended upon by a
fifth of PNG’s population. Second, the village’s land has not
experienced any major logging or other resource extraction to
date, which limits village resource degradation and losses. The
lack of such resource extraction also eliminates the possibility
of confounding land-cover classifications between logging
and swidden, which is common in tropical regions. Third,
there is no road access to the village (access is by boat only)
so additional pressure on resources from an influx of migrants
is limited. Last, the population growth rate between 1980 and
2011 in the village is 6% per year, higher than the national
average of 4.5% per year. Therefore, if there is a relationship
between population growth and swidden expansion, it should
be more evident in this village.

Satellite Image Processing and Analysis

Landsat scenes from 1999 and 2011 were selected, as these
scenes correspond to interview data. The 1999 image is a
Landsat 5 TM image and 2011 is a Landsat 7 ETM+ image.
Both scenes were captured during the dry season (September
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– December) when the differences between land-covers are
more spectrally distinguishable and land is more intensively
cultivated. A single scene covers the entire village area. Image
preprocessing included atmospheric correct ions,
georectification, and cloud masking. The classification pro-
cess includes tasseled cap transformation, wetness –brightness
difference index (Helmer et al. 2009), and K-means unsuper-
vised classification. A binary classification of swidden and
non-swidden land-covers was created (Table 1). A detailed
description of image classification methods and accuracy as-
sessments can be found in Hoover et al. (in review).

Independent, high resolution imagery (satellite imagery or
aerial photos) is not available for the period of time when the
1999 Landsat scene was obtained for an accuracy assessment
and therefore, visual interpretation of the raw imagery was
used in combination with GPS ground-truth points from
Bein et al. (2007) to assess the accuracy of the 1999 land-
cover results. To conduct classification accuracy assessments
for the 2011 Landsat image analysis, an independent image
from the GeoEye satellite was available and captured in
October 2010. The GeoEye image has a finer resolution
(2 m) than the Landsat image (30 m) and is useful for visually
interpreting land-cover accuracy for the 2011 classification
results. Accuracy assessments are provided for the remote
sensing analysis alone and for the PRS methods.

Participatory Data

We gathered information about land management and land-
use from the local land-managers using participatory methods
including semi-structured surveys, structured interviews
(Chambers 1994), and participatory resource and land-use

mapping (King 2002; Dunn 2007). The semi-structured
su rveys and d i s cus s i ons we re conduc t ed w i th
knowledgeab l e commun i ty membe r s to ga in a
comprehensive understanding of the framework of the
customary land tenure system and swidden practices.
Fieldwork was done in 2011 and 2014. Similar structured
interviews conducted in 1999 by Bein et al. (2007) and
Wagner (2002) to assess swidden land-use were referenced
to add a temporal aspect to the study.

Surveys and Interviews

Through structured interviews we obtained information about
household resource use. There were 32 randomly selected
households and informants were divided equally between
male and female. The interviews followed a list of questions
that were consistent across informants and focused on swid-
den resources. Each informant described household swidden
plots as the area currently cultivated. We observed that
fallowed land is not reported by village land-managers as part
of their swidden area. This is due either to the phrasing of
interview questions or to how land-managers perceive
swidden land. Numerical values obtained from the inter-
views (e.g. plot area) were averaged across the 32 house-
holds and scaled up to represent the village population.
Qualitative information, such as perspectives about the
drivers of resource use changes, typically fell into 3–4
categories and were generalized. To account for the total
area utilized in the swidden cycle (cultivated swidden and
fallowed swidden land), the cultivated swidden area is
multiplied by the total time of the swidden cycle for
1999 (7 years; Bein et al. 2007) and 2011 (5.75 years).

Fig. 1 Papua New Guinea and
Lae, the second largest city in the
country are identified.
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Participatory Mapping of the Swidden Area

A hand-drawn participatory map (PPM) map of the
village and swidden area was created. Ground-
truthing of swidden plots was done with a GPS and
tape measure to confirm plot location, size, orienta-
tion, and the phase (newly cleared, cultivated, or fal-
low). The PPM was digitized and georeferenced to the
2011 Landsat image. Reference points were added to
a GeoEye image captured in 2010, as the finer reso-
lution assists in comparing land-cover and the PPM in
greater detail.

Participatory Remote Sensing and Data Validation

A critical component of participatory data collection,
which is often skipped, is for researchers to incorpo-
rate and seek feedback from stakeholders before results
are published (McCall 2003; Laituri 2011). The data
validation process has been shown to facilitate addi-
tional discussions, information sharing, and collective
learning among collaborators, and also improve re-
source and management negotiation and decision-
making (Ruankaew et al. 2010; Laituri 2011). To val-
idate our results we returned to the village in 2014.
The results of PRS data analysis were presented to a
20-person group and the community as a whole.
Posters were created and translated into Tok Pisin (na-
tional language) and each poster was presented orally
and hung in the community center so that anyone
could review and comment on the results. Everyone
was encouraged to ask questions, discuss the results,
and make edits to the posters. In the smaller 20-person
group specific questions were posed, detailed notes taken,
and map edits made to assure the accuracy of LULC clas-
sifications. Edits and corrections to the data and analyses
were recorded and incorporated into final products. The
remote sensing and participatory methods are processed
independently and then paired for comparison and the
summarization of results (Fig. 2).

Results

Accuracy Assessments

Accuracy assessments for the remote sensing analysis alone
and PRSmethods show that the inclusion of participatory data
improves overall accuracy and the Kappa Statistic for 1999
and 2011 (Table 2). For both years, the omission error is
higher than the commission errors for the swidden class,
meaning non-swidden is inaccurately classified as swidden
more often than swidden as non-swidden.

Satellite Image Analyses

The maps in Fig. 3 show swidden and village land-cover for
1999 and 2011. The village area is composed of smaller swid-
den plots, fruit trees, and the village settlement (e.g. houses,
schools). The northern arm of delta and land boundary changes
over time, as it is influenced by the meandering river. Evidence
of the river changing course can be observed between the
scenes. Most of the non-swidden area between the two arms
of the delta remains naturally vegetated because the soil is too
moist to be successfully cultivated. This causes the swidden
area to maintain a similar shape over time. There are two areas
with notable increases in swidden area in the 2011 classifica-
tion. First, swidden associated land-cover is wider along both
arms of the delta. Second, swidden associated land-cover is
more extensive in the area between the delta and the village.

Participatory Data

Structured Interviews

Data compiled from our 2011 interviews and the 1999 data from
the Bein et al. (2007) andWagner (2002) studies are presented in
Table 3. Between 1999 and 2011 the population grew by 371
people and the number of households in the village increased
from 80 to 128. The length of the swidden cycle (cultivated
and fallowed) was 7 years in 1999 and 5.75 years in 2011. To
accommodate these changes the duration of the cultivated

Table 1 Land classification
categories for swidden and non-
swidden cover types

Swidden Non-Swidden

• Cleared of vegetation

• Burned plots

• Sparse crop cover (wide spacing or early growth)

• Denser crop cover

• Early fallow (weeds and grass)

• Moderate fallow (grass, bushes, and small trees - 2-3 m in height)

• Late fallow (small and medium trees −5-6 m in height)

• Built structures

• Forest

• Riparian

• Wetland

• Water bodies

• Sandy beach

• Clouds

• Shadows
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swidden lengthened from 1.2 to 2.75 years and the fallowed
area shortened from 5.8 to 3 years. The average cultivated
swidden area per household decreased from 0.404 ha (64 m2)
in 1999 to 0.323 ha (57 m2) in 2011. While the number of
cultivated swidden plots per household increased from 3.1 in
1999 to 3.8 in 2011, the average swidden area of a single plot
decreased from 0.13 (36 m2) to 0.095 (30 m2) ha, respectively.

Households maintained a greater number of smaller plots with
the total area per plot decreasing over time.

Combining Participatory and Remote Sensing Datasets

Figure 4 shows the hand-drawn land-usemap or PPMoverlaid
on the 2011 classified Landsat image. The subsets compare

Table 2 Accuracy assessment for the 1999 and 2011 classified scenes. Visual interpretation of the raw 1999 Landsat and 2010 GeoEye scenes were
used for assessments. The remote sensing analysis alone and participatory remote sensing methods (in parenthesis) are both listed. The bold text shows
where the correct classification was identified in the raw image and land-cover map.

1999 Landsat raw image

1999 Landsat Land-Cover Map Class Non-swidden Swidden Row Total Users accuracy Commission error

Non-swidden 25 (27) 5 (2) 30 (29) 83% (93%) 17% (7%)

Swidden 13 (4) 57 (67) 70 (71) 81% (94%) 19% (6%)

Column Total 38 (31) 62 (69) 82 (94)

Producers accuracy 66% (87%) 92% (97%)
Omission error 34% (13%) 8% (3%)

Overall Accuracy 85% (94%)

Kappa Statistic 0.64 (0.86)

2010 GeoEye raw image

2011 Landsat Land-Cover Map Class Non-swidden Swidden Row Total Users accuracy Commission error

Non-swidden 33 (44) 6 (2) 39 (46) 85% (97%) 15% (4%)

Swidden 16 (3) 45 (51) 61 (54) 74% (94%) 26% (6%)

Column Total 49 (47) 51 (53) 78 (95)

Producers accuracy 67% (94%) 88% (96%)
Omission error 33% (6%) 12% (4%)

Overall Accuracy 78% (95%)

Kappa Statistic 0.56 (0.90)

Fig. 2 Remote sensing and
participatory methods are shown
side by side to illustrate how data
were merged for analyses and
results
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the output from remote sensing analysis alone and from the
integrated PRS method for two locations, the main swidden
(4a and 4b) and swamp (4c and 4d) areas. The swidden area
in Subsets 4a and swamp land in Subset 4c show the land-
cover classification using remote sensing analysis alone.
Land managers reviewed these results during the PRS
review and analyses decided that the swidden area in sub-
sets 4a and 4c (remote sensing classifications alone) in-
cludes too much swidden land-cover. Therefore, Subsets
4b (swidden) and 4d (swamp) show the swidden land-
cover area (dark grey) that should be merged with the
non-swidden class. The dark grey land-cover will be re-
ferred to as the adjacent-non-swidden area. Land man-
agers described that the adjacent-non-swidden area

(Subset 4b) is made up of forest land-cover and is not
used for swidden (cultivated or fallow). The PPM overlay
further supports the land managers’ perspectives, as the
swidden plots in the PPM have a tighter fit within the
swidden land-cover class in Subset 4b than in Subset 4a.
Also, when the adjacent-non-swidden area is allocated to
the non-swidden class, the blocks of natural vegetation
that are scattered within the swidden area are identified.
Land managers explain that these blocks of natural vege-
tation are common and can include fallow vegetation,
groups of large trees (fruit trees, shade trees), natural
fences, or vegetation on land not suitable for cultivation.

Subset 4c is dominated by swamp vegetation and land
managers explained that this area is too wet for swidden,

Fig. 3 Swidden land-cover using
remote sensing data alone for
1999 and 2011

Table 3 The 2011 data were
collected during household
structured surveys. Data in the
1999 column were derived from
Bein et al. 2007. The equations in
brackets show how the bolded
categories are calculated

Summary of participatory data 1999 2011

Total population 479 850

Number of households interviewed 26 32

Approximate number of households in the village 80 128

Average people per household 6.1 6.4

Average cultivated & fallow swidden length (yr) 1.2 & 5.8 2.75 & 3

Total swidden cycle (yr) 7 5.75

Average cultivated swidden area of a single plot (ha) 0.13 0.095

Average number of cultivated plots per household 3.1 3.8

Average cultivated swidden area per household (ha)

[Average number of plots per household * average plot area (ha)]

0.404 0.323

Total cultivated swidden area (ha)

[Average cultivated swidden area per household (ha) * the number of
households in the village]

32.3 41.3

Total swidden cycle area (cultivated and fallowed swidden)

[Total cultivated swidden area (ha) * Total swidden cycle length (yr)]

225.4 237.5
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and any land-cover classified as swidden is incorrect.
Therefore, nearly all of the land in this region is misclassified
as swidden when only remote sensing analytical methods are
used and should be non-swidden. The adjacent- non-swidden
area in Subset 4d greatly reduces the amount of swamp land
included in the swidden class. Both subset groups b and d
show the portion of the swidden land-cover class that should
bemerged with the non-swidden class and this change reduces
areas of misclassified swidden land-cover.

Figure 5 shows georeferenced swidden plots atop the clas-
sified Landsat (30 m) and raw GeoEye (2 m) images. The
pixilated structure and different spatial resolution of these im-
ages shows how scale influences the interpretation of swidden
LULC. Due to the difference in the fieldwork and capture
dates of the GeoEye image, some of the listed LULCs have
changed. In general, this figure better shows the complex and
fragmented nature of swidden land-cover and why it is diffi-
cult to assess using remote sensing methods alone. First, swid-
den plots differ in orientation, size, and shape. Regardless of
size, a swidden plot can be contained within a single Landsat
cell or cross into multiple cells. Also, even though the
georeferenced plots are rectangular, plots were often irregular

in shape and often follow natural contours or features. Second,
the land-covers do not always match the land-use and plots
can havemultiple uses and be classified as a single land-cover.
Third, the newly cleared plots are easier to identify compared
to plots with crop or fallow land-covers and can influence
reflectance qualities disproportionally as bare soil has higher
reflective qualities in some wavelengths.

Figure 6 compares the swidden area in hectares classi-
fied using remote sensing analysis alone and the PRS
methods for 1999 and 2011. The remote sensing classifi-
cations without land manager inputs are 993 ha in 1999
and 1395 ha in 2011. The PRS method results in an out-
put that includes two land-cover classes, swidden and ad-
jacent-non-swidden. These two classes are combined for
the 1999 and 2011 PRS methods to illustrate how much of
the land-cover from remote sensing analysis alone is clas-
sified as adjacent-non-swidden by land managers. The
amount of swidden area is 455 ha and 491 ha and the
adjacent-non-swidden area is 537 ha and 905 ha for
1999 and 2011, respectively. The adjacent-non-swidden
area accounts for 35% and 45% of the swidden land clas-
sified by remote sensing analysis alone.

a b

c d

Fig. 4 The participatory map (PPM) of village and swidden land-use is
overlaid with the 2011 Landsat classified image. Subsets a and b show the
delta swidden area with individual plots identified (boxes) and subsets c
and d show a swamp area (hashed areas). Subsets a and c are land-cover

classifications using remote sensing analysis alone. Subsets b and d are
the classifications after the land managers delineated misclassified swid-
den land-cover, shown in dark grey, and these areas should be merged
with the non-swidden class
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Each dataset in Fig. 6 shows an increase in swidden
area over time. The larger increase in swidden area is
for remote sensing analysis alone at 402 ha. The PRS
swidden area increased by 35 ha between 1999 and
2011 when the adjacent-non-swidden area is not includ-
ed in the total area. The percent increase over time for
the remote sensing analysis alone is 40% and PRS is
8%.

Discussion

The land-cover datasets for PRS and remote sensing analysis
alone present different information about swidden area and
changes at the village scale. The PRS methods results show
that when these data are paired a more in depth and compre-
hensive understanding of swidden area LULCs are achieved
than when either data set are used alone. The integration of
land-manager perspectives and knowledge via PRS methods
offers a unique insight into local land-use.

The classification of swidden area land-cover using re-
mote sensing analysis alone is over two and a half times
larger than the results using PRS methods. In part, the
differences in area are a result of transforming a continu-
ous landscape into the discrete and categorical format of
the imagery and analysis, respectively. While this is the

Fig. 5 The ground-truthed points and swidden plots shown are accurate
area, location, orientation, and land-use and land-cover type. Some of the
land-covers do not align with ground-truthed land-uses because there is a

year separating the image capture and field data collection. A 30 m pixel
grid is overlaid on the 2 m pixel resolution of the GeoEye image for
resolution comparison
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case in nearly all land-cover analyses, swidden areas are
made up of highly complex land-covers and it proves
more difficult to accurately classify swidden using
Landsat data alone. The accuracy assessments and
Kappa statistic quantitatively supports that swidden com-
mission and omission errors are higher when remote sens-
ing analyses alone are compared to PRS methods. The
majority of these errors show swidden land misclassified
as non-swidden, which is why the swidden area is larger
in the remote sensing analysis alone.

All land-cover analyses are subject to mixed pixels
because continuous landscapes are dissected into pixels
and each assigned a single spectral number. However, in
swidden landscapes this is extenuated due to the sub-
pixel land-use characteristics. The georeferenced plots
and finer resolution of the GeoEye image (Fig. 5) dem-
onstrate the degree to which the swidden area is a patch-
work of land-covers that have countless different land-
cover combinations in one Landsat (30 m) pixel. Nearly
every pixel has a different proportion of swidden, fallow,
and natural vegetation land-covers because swidden plots
are created in response to landscape and crop character-
istics to maximize yields (Padoch 1986; Conklin 1961).
We posit this creates a higher proportion of mixed pixels
that results in the over estimation of swidden area using
remote sensing analysis alone, as many of the mixed
pixels have a spectral signature more similar to swidden
land-cover.

The PPM overlay on the imagery also helps understand
some of the classification errors. The PPM overlay shows
areas that are actively cultivated swidden plots and the
areas between the swidden plots are a combination of
fallow and non-swidden (natural vegetation) land. As rec-
ommended by the land-managers during PRS methods,
the additional adjacent-non-swidden class (dark grey;
Fig. 4) is added to the land-cover classification to show
how much land is misclassified. The area classified as
swidden is consequently reduced and land managers
agreed that merging the adjacent-non-swidden area with
the non-swidden class is more representative of the land-
covers found in the swidden areas and the fallowed and
non-swidden natural vegetation are better identified. In
addition, when the adjacent-non-swidden class is exclud-
ed the commission and omission errors are reduced and
overall accuracy improves.

The increase in swidden area seen between 1999 and 2011
using PRS methods is 35 ha compared to 402 ha increases
observed using remote sensing analysis alone (Fig. 6). The
population grew from approximately 479 people to 900 peo-
ple over the time frame (village elder, Wagner 2002). Both
years have large areas misclassified as swidden when the re-
mote sensing alone approach is used, with more area is
misclassified in 2011. We posit that this is caused by local

weather conditions that make natural vegetation and swidden
land-covers more spectrally similar. For example, the delta
and coastal area have a high water table and the annual pre-
cipitation regime influences soil moisture and vegetation
growth, which can make the swidden and natural vegetation
less distinguishable. Therefore, refining the remote sensing
analyses with local landmanager knowledge greatly improves
the ability to distinguish these land-covers when classification
methods cannot. The 35 ha increase in swidden land-cover
over time could accurately represent swidden expansion over
time, but we hesitate to make conclusive assessments with
only two data points. Hoover et al. (in review), conducted a
longer-term study between 1972 and 2015 with 40 Landsat
scenes and identified that there was not a significant temporal
trend in swidden land-cover change. Thus, the observed swid-
den area changes could be due to differences in swidden phase at
the time of scene capture. For example, a larger proportion of
recently burned plots are more spectrally distinct and would re-
sult in a larger swidden area detected in the imagery compared to
more mature stages of crop cover, which is more spectrally sim-
ilar to natural vegetation. Reflectivity differenceswithin the swid-
den area could also be caused by changes in cultivars, changes in
crop density, and more area cleared per season from shortened
fallows, all of which were described by land managers Hoover
et al., (in review). Although, land managers recognize that short-
ening fallows to crop more continuously results in higher weed
encroachment, increased pest infestations, and lower soil fertility
over time, it is still done. The land mangers described that they
have ample land for cultivation, but it is better to intensify
cultivation on the more fertile delta area than expand on to less
fertile land or the adjacent hillsides. This preferential selection is
similar to results from the McAlpine and Freyne (2001) study
conducted at the provincial scale across PNG.

The correlative relationship between the increase in popula-
tion and swidden land expansion over time is overly simplistic
and falls short in describing the multifaceted and complex
drivers of land change (Bourke 2001; Filer et al. 2009;
Boserup 1976; Lambin et al. 2003). However, at the national
extent, Shearman et al. (2009) cites the growing population as
the primary cause of expanding swidden areas. In a follow up
study between 2002 and 2014 by Bryan and Shearman (2015)
show the amount of land-cover changes attributed to swidden
agriculture was nil, even though population growth followed the
same trajectory. The lack of swidden expansion was described
as intensification of current swidden areas and an economic shift
to a cash economy. Although Shearman et al. (2009) and Bryan
and Shearman (2015) performed ground-truthing and accuracy
assessments for land-cover classifications, none of their methods
included land manager information, which would have likely
identified intensification strategies in both studies as McAlpine
and Freyne (2001) found in their study. From this, we believe
that it is highly likely thatmany swidden areas are over classified
in the 1972–2002 Shearman et al. (2009) study. Another reason
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large changes in swidden area were observed between 1972 and
2002 is because Shearman et al. (2009) included two land-
covers into the subsistence agricultural class that contributed to
swidden area. First, forest cover changes caused by landslides
were included in the swidden category and should be a class in
and of itself due to the frequency and spatial extent of landslides
in PNG. Second, land-cover adjacent to swidden areas and vil-
lages was classified as degraded forest because these areas could
not be attributed to other causes of forest loss. This contrasts
with information supplied by land managers in our study, as the
land-cover adjacent to the swidden area was not used by land
managers and was, in part, affected by mixed pixels. We argue
that in regions where swidden is a major land-use, additional
LULC classification strategies should be incorporated into land-
cover classification processes, such as PRS. Also, swidden
should be allocated as a separate LULC category at national
and wider extents because there are a range of different LULC
types and the ecological impacts among these differ (Rerkasem
et al. 2009; Delang and Li 2013; Ziegler et al. 2011; Kremen
and Miles 2012).

To improve the delineation of land-cover associated with
swidden land-use systems at wider extents, a finer spatial res-
olution may help. Often such data are not available for longer
time series, e.g. dates before 2000. Even with fine resolution
data image analyses are still challenging in swidden land-
scapes and the inclusion of PRS methods would assist in re-
fining land-cover classifications to more accurately distin-
guish among the different land-covers found in swidden land-
scapes. For large areas with coarse resolution data, land-cover
classifications that rely on remote sensing analysis alone are
likely to allocate more forest loss to swidden in regions where
resource extraction (e.g. logging) because these land-cover
changes can be confounded, especially if villages border log-
ging concessions. For our study village LULC assessments
and changes are not confounded by logging yet classifying
swidden with remote sensing analysis alone still over classi-
fied swidden LULC. Collaborative PRS methods allow us to
refine the land-cover classification and we identify multiple
areas that were misclassified as swidden in the output of the
remote sensing analysis alone.

Potential Sources of Error

A potential source of error from participatory data collection is
that swidden plots could have been misestimated during the
data collection phase when land-managers were asked to de-
scribe their plots in approximate length and width measure-
ments. Although ground-truthing efforts measured plots and
assured that estimates were accurate in area, all of the plots in
the swidden area were not measured. Also, length and width
area measurements do not account for natural and irregularly
shaped plots, which are widespread in this swidden area
(Fig. 4 and 5). While these methods capture the approximate

area of a plot, it is likely that the true area slightly differs,
which would affect cultivated and total swidden area calcula-
tions. As land-use results show, a large majority of the total
swidden area is under fallow or natural vegetation, yet not
much information was collected about the fallow periods aside
from the duration. Simply multiplying the cultivated swidden
area by the swidden cycle length may not be a good represen-
tative of total swidden area because land may be used and
rotated in a different manner. In general, more information is
needed about fallow and naturally vegetated areas and this is
another area where land-cover information could be usefully
paired with land-use information from local land managers to
estimate how much land is devoted to the complete swidden-
fallow cycle.

The second aspect that influences land-cover assessment is
the resolution of the satellite imagery in relation to the mean
swidden plot area. Land-managers described single swidden
plots ranging from 12 m2 to 105 m2, with a mean of approx-
imately 30 m2. The average plot size is equivalent to the area
of one Landsat pixel but this does not account for the smallest
identifiable object in an image (spatial resolution). To visually
identify individual swidden plots multiple Landsat pixels are
needed and we found that approximately 100 m2 or just over a
3 × 3 pixel area is needed to identify a plot. Such a large area
only accounts for larger plots and we surmise that the spatial
resolution of Landsat data is too coarse to identify swidden
plots on an individual basis. The finer resolution (2 m) of the
GeoEye imagery allowed for smaller swidden plots to be iden-
tified, but deciphering the different land-uses and associated
land-covers is still a challenge due to the mosaicked and var-
ied landscape created by swidden land-use. While the GeoEye
data have a finer resolution, it does not have the temporal or
spatial coverage available from the Landsat archives, and thus
Landsat data will continue to be used for time series analysis
of swidden LULC changes in the future. This reality makes it
imperative to find methods for using Landsat data to accurate-
ly classify land-uses and their associated land-covers, such as
swidden, that many rural populations worldwide continue to
make use of and rely upon for their livelihoods.

Conclusion

Overall, swidden landscapes are difficult to classify and more
prone to mixed pixels than other agricultural land-uses and
their associated land-covers. Although finer resolution satel-
lite data may be better suited for swidden LULC detection and
change analyses, these data are often costly and do not have
the same historical extent as the Landsat archives. Therefore
refining Landsat classifications of swidden LULC is vital, as
many people in the world continue to rely upon swidden for
their livelihoods.
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Participatory data from local land-managers is important to
incorporate into satellite data assessments as it improves ac-
curacy assessments and provides additional details to better
understand observed LULC trends. Therefore, in regions
where swidden is the mainstay of subsistence livelihoods,
the inclusion of participatory information is a valuable data
source for accurate LULC assessments. We demonstrate that
the information derived from participatory methods can be
used with Landsat datasets to improve LULC assessments
and understand temporal dynamics. Importantly, the assess-
ment of swidden area from PRS methods is more accurate
than that from remote sensing analysis alone.

PRS methods reveal the differences between Landsat
analyses and land manager information. Landsat smoothes
the fragmented landscape into pixels representing single
land-covers and overestimates the swidden area by two
and a half times compared to land manager land-cover
descriptions. One reason these datasets differ is that land
managers described swidden area as only actively culti-
vated land, whereas Landsat analyses include cultivated
swidden, fallowed, and natural vegetation indiscriminate-
ly. When both datasets are used in tandem, the distinc-
tions among actively cultivated swidden, fallow, and nat-
ural vegetation can be extracted. We suggest that the cul-
tivated swidden area, as described by the land managers,
could be subtracted from the total swidden area classified
using Landsat to distinguish how much land is cultivated,
fallowed, or under non-fallow natural vegetation.

In conclusion, if only LULC classifications from remote
sensing analysis methods alone are used when assessing swid-
den LULC then people’s swidden livelihood systems will con-
tinue to be misclassified and mischaracterized. This has argu-
ably happened for land-cover change analysis in PNG at the
national extent. We show at the village level how PRS
methods, the combination of the remote sensing and partici-
patory data, is one avenue of refining swidden LULC assess-
ments to more accurately reflect the reality of swidden land-
use and the associated land-covers.
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